Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2352, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287067

RESUMO

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.


Assuntos
Diabetes Mellitus , Fator A de Crescimento do Endotélio Vascular , Humanos , Coelhos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Neovascularização Fisiológica , Isquemia/patologia , Diabetes Mellitus/patologia , Alginatos/uso terapêutico , Membro Posterior/irrigação sanguínea
2.
Res Sq ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398327

RESUMO

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.

3.
Acta Biomater ; 167: 425-435, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321528

RESUMO

Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.


Assuntos
Hiperlipidemias , Doenças Vasculares Periféricas , Coelhos , Camundongos , Animais , Sindecana-4/farmacologia , Sindecana-4/uso terapêutico , Fator 2 de Crescimento de Fibroblastos , Neovascularização Fisiológica , Isquemia/terapia , Membro Posterior/irrigação sanguínea , Modelos Animais de Doenças
4.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993249

RESUMO

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.

5.
J Vis Exp ; (148)2019 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31205305

RESUMO

Peripheral vascular disease is a widespread clinical problem that affects millions of patients worldwide. A major consequence of peripheral vascular disease is the development of ischemia. In severe cases, patients can develop critical limb ischemia in which they experience constant pain and an increased risk of limb amputation. Current therapies for peripheral ischemia include bypass surgery or percutaneous interventions such as angioplasty with stenting or atherectomy to restore blood flow. However, these treatments often fail to the continued progression of vascular disease or restenosis or are contraindicated due to the overall poor health of the patient. A promising potential approach to treat peripheral ischemia involves the induction of therapeutic neovascularization to allow the patient to develop collateral vasculature. This newly formed network alleviates peripheral ischemia by restoring perfusion to the affected area. The most frequently employed preclinical model for peripheral ischemia utilizes the creation of hind limb ischemia in healthy rabbits through femoral artery ligation. In the past, however, there has been a strong disconnect between the success of preclinical studies and the failure of clinical trials regarding treatments for peripheral ischemia. Healthy animals typically have robust vascular regeneration in response to surgically induced ischemia, in contrast to the reduced vascularity and regeneration in patients with chronic peripheral ischemia. Here, we describe an optimized animal model for peripheral ischemia in rabbits that includes hyperlipidemia and diabetes. This model has reduced collateral formation and blood pressure recovery in comparison to a model with a higher cholesterol diet. Thus, the model may provide better correlation with human patients with compromised angiogenesis from the common co-morbidities that accompany peripheral vascular disease.


Assuntos
Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Membro Posterior/patologia , Hiperlipidemias/complicações , Isquemia/patologia , Neovascularização Patológica/patologia , Angioplastia , Animais , Artéria Femoral/cirurgia , Membro Posterior/irrigação sanguínea , Isquemia/etiologia , Masculino , Neovascularização Patológica/etiologia , Coelhos
6.
Cardiology ; 125(4): 242-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23816794

RESUMO

PURPOSE: In acute myocardial infarction, left ventricular (LV) unloading reduces endothelin-1 (ET-1) release. We tested that endogenous ET-1 released during acute myocardial infarction might mediate ischemia/reperfusion (I/R) injury by stimulating increased intracellular calcium concentration, [Ca(2+)]i, and apoptosis. METHODS: Rabbits were subjected to 1 h of coronary artery occlusion followed by 3 h of reperfusion. Unloading was initiated 15 min prior to reperfusion and was maintained during reperfusion. The control group was subjected to reperfusion. Animals were treated with ET-1 receptor antagonist BQ123. In parallel, isolated rabbit cardiomyocytes subjected to simulated I/R with or without ET-1 or BQ123, intracellular Ca(2+) and cell death were assessed with flow cytometry. RESULTS: LV unloading prior to reperfusion reduced myocardial ET-1 release at 2 h of reperfusion. Infarct size was reduced in unloaded and BQ123 groups versus controls. LV unloading and BQ123 treatment reduced the percentage of apoptotic cells associated with increases in Bcl-2 protein levels in ischemic regions. BQ123 reduced both ET-1-induced [Ca(2+)]i increase and cell death for myocytes subjected to stimulated I/R. CONCLUSION: We propose that components of reperfusion injury involve ET-1 release which stimulates calcium overload and apoptosis. Intravenous ET-1 receptor blockade prior to reperfusion may be a protective adjunct to reperfusion therapy in acute myocardial infarction patients.


Assuntos
Endotelina-1/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Vasos Coronários , Antagonistas do Receptor de Endotelina A , Hemodinâmica/fisiologia , Ligadura , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeos Cíclicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Coelhos , Proteína X Associada a bcl-2/metabolismo
7.
J Thorac Cardiovasc Surg ; 136(2): 343-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18692640

RESUMO

OBJECTIVES: The aim of this study was to test the hypothesis that after an acute myocardial infarction, endothelin-1 release with subsequent calcium overload is a mediator of myocardial reperfusion injury, which can be inhibited, in part, by left ventricular unloading immediately before reperfusion. We recently have reported that left ventricular unloading before reperfusion reduces infarct size after acute myocardial infarction. However, the biologic mechanisms of infarct salvage in unloaded hearts subjected to ischemia/reperfusion remain undefined. METHODS: Twelve pigs were subjected to 1 hour of left anterior descending coronary artery occlusion followed by 4 hours of reperfusion. A left ventricular assist device was initiated 15 minutes before reperfusion and maintained during reperfusion (assist device group, n = 6). A control group (n = 6) was subjected to reperfusion alone. Infarct size, endothelin-1 plasma levels, intracellular calcium levels, and apoptosis were analyzed in both groups. RESULTS: At reperfusion, left ventricular unloading significantly decreased left ventricular end-diastolic and end-systolic pressures. Infarct size, expressed as a percentage of zone at risk, was also significantly reduced by 54% in the group with the left ventricular assist device compared with controls. Support with a left ventricular assist device reduced endothelin-1 release from the heart at 15 minutes, 30 minutes, and 1 hour of reperfusion. Myocardial release of endothelin-1 was significantly correlated with infarct size at 15 minutes of reperfusion (r = 0.79; P = .008). Left ventricular unloading caused a significant reduction of calcium overload and of the percentage of apoptotic cells in the ischemic region. CONCLUSION: Our findings suggest that endothelin-1 release and calcium overload are important mediators of reperfusion injury and that they can be significantly reduced by left ventricular unloading before coronary artery reperfusion during myocardial infarction.


Assuntos
Cálcio/metabolismo , Endotelina-1/sangue , Endotelina-1/metabolismo , Infarto do Miocárdio/metabolismo , Reperfusão Miocárdica , Função Ventricular Esquerda , Animais , Apoptose , Circulação Coronária , Hemodinâmica , Marcação In Situ das Extremidades Cortadas , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Sus scrofa
8.
Catheter Cardiovasc Interv ; 64(2): 182-92, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15678467

RESUMO

We tested the hypothesis that unloading the left ventricle just prior to reperfusion provides infarct size reduction compared with left ventricular (LV) unloading postreperfusion and reperfusion alone. Twenty-four mongrel dogs were subjected to 2 hr of left anterior descending artery occlusion and 4 hr of reperfusion. A transvalvular (TV) left ventricular assist device (LVAD) was inserted just prior to reperfusion and maintained during the rest of the experiment (LV Assist Pre group). In the LV Assist Post group, the TV LVAD was inserted and activated just after reperfusion. A control group was subjected to reperfusion alone with a sham-TV LVAD. At baseline, the hemodynamic data were similar in the three groups. Myocardial infarct size expressed as percentage of area at risk was significantly reduced in the LV Assist Pre group compared to the control group (P = 0.011) and to the LV Assist Post group (P < 0.05). At 4 hr of reperfusion, transmural myocardial blood flow in the ischemic zone was slightly higher in the animals unloaded prior to reperfusion compared to controls and significantly higher than in the LV Assist Post group (P = 0.04). Postreperfusion end-diastolic wall thickness returned to baseline level in the TV LV Assist Pre group compared to both controls and TV LV Assist Post group. In these latter two groups, a significant increase in postreperfusion end-diastolic wall thickness and contraction band necrosis in the central ischemic zone correlated well with the degree of reperfusion injury. LV unloading prior to, but not after, reperfusion reduces the extent of myocardial necrosis in canine hearts subjected to 2 hr of left anterior descending artery occlusion and 4 hr of reperfusion compared to either reperfusion alone or LV unloading after reperfusion.


Assuntos
Coração Auxiliar , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Reperfusão Miocárdica , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/terapia , Análise de Variância , Animais , Modelos Animais de Doenças , Cães , Hemodinâmica/fisiologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...